1. トップ
  2. 新着ニュース
  3. 経済
  4. プレスリリース

新しいプライバシー保護データ解析プロトコル「local-noise-free protocol」を開発

共同通信PRワイヤー / 2024年11月29日 12時16分

新しいプライバシー保護データ解析プロトコル「local-noise-free protocol」を開発

図1:従来のシャッフルモデルのプロトコルと3つの課題

安全で高精度な頻度分布の推定を可能に


2024/11/29

統計数理研究所


統計数理研究所の村上隆夫准教授、電気通信大学の清雄一教授、産業技術総合研究所の江利口礼央研究員の研究グループは、パーソナルデータの漏洩を強固に防ぐ「差分プライバシー(DP: Differential Privacy)」※1を満たす新しいプロトコル「local-noise-free protocol」を開発しました。開発したプロトコルでは、各ユーザが自身のパーソナルデータをそのまま暗号化して「shuffler」と呼ばれる中間サーバに送信します。次に、shufflerが受け取ったデータのランダムサンプリングとダミーデータの追加を行った上でデータをシャッフルし、サービス事業者に送信します。最後に、サービス事業者が受け取ったデータを復号し、全ユーザのデータの頻度分布を推定します。このプロトコルにより、サービス事業者や一部の悪意を持ったユーザが様々な不正を試みても、安全で高精度な頻度分布の推定が可能となり、それに基づく様々なデータ解析への応用が期待できます。


本成果は、情報セキュリティ分野の最難関国際会議The 46th IEEE Symposium on Security and Privacy (S&P 2025)(過去5年間の採択率:14.8%)に採択されました。


 

【研究の背景】

 スマートフォン、ウェアラブル端末、IoT(Internet of Things)などの普及に伴い、位置情報や身体活動データなどの様々なパーソナルデータを収集して、様々なデータ解析に利用できるようになりました。一方、このようなデータ解析は個人の情報を用いているため、プライバシーの問題が懸念されています。個人のプライバシーを強固に保護するために、「差分プライバシー(DP: Differential Privacy)」※1と呼ばれる安全性指標が、デファクト標準として広く用いられています。

差分プライバシーを実現するモデルとしては、中央集権型モデル、局所型モデル、シャッフルモデルなどがあります。中央集権型モデルでは、サービス事業者が全ユーザのパーソナルデータを保持しており、そこから求めたデータ解析結果にDPを満たすノイズを加えます。このモデルは、高いデータ解析結果の精度を実現できるのですが、不正アクセスなどにより、サービス事業者から全ユーザの元データが漏洩するリスクを抱えています。局所型モデルでは、ユーザが自身のデータにDPを満たすノイズを加えた上でサービス事業者に送信し、サービス事業者がノイズ付きのデータからデータ解析結果を求めます。このモデルではサービス事業者にはノイズ付きのデータしか送られないため、サービス事業者から元データが漏洩するリスクがありません。しかし、各ユーザがDPを満たすように大きなノイズを加える必要があるため、データ解析精度が低いという問題があります。

この記事に関連するニュース

トピックスRSS

ランキング

複数ページをまたぐ記事です

記事の最終ページでミッション達成してください