1. トップ
  2. 新着ニュース
  3. IT
  4. IT総合

トランジスタ最先端! RibbonFETに最適なゲート長とフィン厚が判明 IEDM 2024レポート

ASCII.jp / 2025年1月13日 12時0分

 昨年12月7日~11日にかけ、サンフランシスコでIEDM(International Electron Device Meeting) 2024が開催された。IEDM 2024の第4弾は、2-1の"Silicon RibbonFET CMOS at 6nm Gate Length"を紹介しよう。インテルのプレビューでは下の画像が該当する。

スライドでは最終的に1.7nmまで短くしたケースが示されているが、3nmがちょうどいいというのが論文での結論となる

RibbonFETにはゲート長6nm、フィン厚3nmが最適

 この論文では、複数枚のRibbonではなく1枚だけのRibbonを構成し、その特性を調べるとともに、ゲート長およびゲートの厚みが性能に与える影響を評価し、最終的にゲート長6nm、フィンの厚みを3nmとすることで極めて性能の良いRibbonFETが構築できることを確認した、というものである。

 FinFET構造が使われるのは3nmあたりのノードまでで、それより微細化するにはGAA(Gate All Around)が有望であり、さらにその先はNMOSとPMOSを縦に積み重ねるCFET構造が有望、という話は連載803回で紹介した招待講演でも語られている話でもある。

CFETは第一段階では既存のRibbonFETを積み重ねる形だが、その先では材質をさらに変更することを想定している。そううまくいくかどうかはまた別の話だ

 こうした将来のRibbon FETに向けて今回試作したのは、ゲート長が6nmというトランジスタである。

CPP(Contacted Poly Pitch)は45nmで、従来ではゲート長は15nm程度になっていた

 ちなみにこの中央の写真は、トランジスタを横から見たもの(下の画像でいう所の赤矢印方向)である。従来ゲート長とCPPは上の画像の左側のように、おおむね比例関係があったのだが、CPPが30nmを切ったあたりからゲート長は10nm程度で停滞していた。これをさらに短縮できる、というのが今回のポイントとなる。

黄色については後述する。Ribbon FETの図はインテルのサイトから拝借した

 CPPというのは要するにトランジスタのゲート同士の間隔である。上の画像の写真は、2つのRibbon FETが並んでおり、間にSource/Drainの端子(S/D EPIはSource/Drainを構成する部分で、その上にコンタクト電極であるCONがつながっている)が入るわけだが、トランジスタの密度を上げようとすると、CPPを小さくしなければならない。

 そのためにはS/D EPIを含む電極の薄型化はもちろん重要だが、もう1つはゲートの厚みを薄くすることも効果的である、とする。

ゲート厚を3nmより薄くすると 性能は向上しないどころかむしろ低下する

 論文では実際に1NR(NR:Nano Ribbon)、つまりフィンが1枚だけのRibbon FETを構築し、その特性を測定したとしている。

複数フィンがある場合、相互に影響しあう可能性があるためにこれを排除するために1フィンのものを試作したとの事。ちなみに左の写真は、上の画像で黄色の方向から見たもの

 実際にVg-Vt(ゲート電圧としきい値電力の差)と、その際に流れる飽和電流をプロットすると、対数軸(グラフ左側)では大差ないように見えるが、直線軸(グラフ右側)で見ると、複数フィンの場合には最大で24%ほどズレるとしており、以下のレポートはすべて1フィンのものである。この1フィンのNMOSトランジスタの性能を測定したのが下の画像である。これは言ってみればこの後の比較の基準となるものである。

Tsi、つまりRibbonの厚みは6nm、ゲート長は18nmである。左は電荷移動量で、トランジスタのスイッチング速度の指標。右はトランジスタの利得(Transconductance)のピーク値。いずれもCMOSとしてはかなり優れた特性を示している

 ゲート長は18nmのままにして、フィンの厚みを変更したときの特性が下の画像である。薄くするほど特性は改善することは見ての通り(DIBLは少ないほどいい)のだが、PMOSはともかくNMOSに関してはTsiが4mmあたりで特性が飽和してしまい、その先の特性改善があまり期待できないとする(PMOSは多少マシだが)。

フィンの厚みを変更したときの特性。縦軸はDIBL(Drain-Induced Barrier Lowering:ドレイン誘起障壁低下)で、しきい値電圧の低下の度合いを示す

 同様に厚みを変えた際のVt(しきい値電圧)とRext(外部抵抗)の推移が下の画像だ。まずVtの方は、6nmより薄くするとバラつきが次第に大きくなる。またRextについても、NMOSなら4nm未満、PMOSでは6nm未満にすると急激に抵抗値が増えるとされる。

厚みを変えた際のVtとRextの推移。Vtの方は、4nm未満になると量子閉じ込め(Quantum Confinement)によりVtが200mVほど増加する。またRextは、Finが薄くなるほどRtipが増えることで、結果としてRextが34~37%増加するとしている

 下の画像の左側は電荷移動量で、こちらも3~4nmあたりまで薄くしてもそれほど大きな損失はないとされる。右側は、過去の論文で示されたものを黒線、今回の測定結果を赤線で示した比較であるが、解説によればNano Ribbonの表面の粗さを改善したことにより、フィンの厚みが薄くなった場合でも電荷移動量が改善することを示しているとする。

左側は電荷移動量。3~4nmあたりまで薄くしてもそれほど大きな損失はない。逆に言えば、3nm未満にすると改善しているとは言え、かなり損失が大きいことが確認できたという意味でもある

 表面の粗さに関する説明が下の画像となる。ここではさまざまな温度で電界移動度を測定し、その挙動を分析することで、移動度を支配するメカニズムを導き出したとする。

左図は論文には含まれていないものだが、Phonon ScatteringとSR Scatteringの2つの点線が交わるのがちょうど3nmあたり。ただしその前から電荷移動量は低下を始めており、これが2.5nmあたりということになる

 右側のグラフは、フィンの厚みが3nm以上であれば移動度を支配するのはフォノンになるが、3nm未満では表面散乱が電界移動度にとって支配的であるとする。要するにここまでの話は、フィンを薄くすれば良いというものでもなく、3nmあたりが薄くする限界であって、それを超えて薄くしても性能は向上しないどころかむしろ低下する、ということを示したわけだ。

チャネル長6nmのRibbon FETが優位 それ以上でも以下でもダメ

 次はShort Channelに関する検討である。Short Channel、日本語では短チャネル効果などというが、チャネルを短くするといろいろ不都合が生じることが知られている。

赤い矢印が刺さっているグレーの部分を短くすると不都合が生じる

 具体的にはしきい値電圧の低下、DIBLの悪化、サブスレッショルド係数の劣化、電流非飽和、Punch Throughなどで、これは別にRibbon FETに限らずFinFETやその前のプレーナー型のトランジスタでも発生していた事柄である(個々の説明はここでは割愛する)。

 では短いとなにが発生するか? という話であるが、下の画像がこれを模式図的に示したものだ。中央のSiNR(Silicon Nano Ribbon)がチャネルそのものであり、その周囲をHigh-K素子で囲い、さらにその外側に金属ゲート(MG:Metal Gate)が存在している。

このスライドも論文には含まれていないが、わかりやすい図ではある

 このチャネル、素子そのものはシリコンがベースであるのだが、そこに不純物をドーピングすることで特性を改良している。ところがゲート長が10nm以下になると、前述したShort Channelの問題に加え、チャネル内に残留ドーピング、つまりに均一にドーピングなされず、ドーピングが濃い部分が残ってしまう現象が発生。このドーピングにより、電荷移動量が低下することで性能が劣化する問題がある、としている。

 ただしこれは適切なドーピングプロファイルを管理することで、チャネル長が10nm以下の場合でも性能を改善できるとしている(具体的にどう適切に管理するのか、は言及がない)。上の画像右のグラフは、なにもしない場合がProcess A、プロファイルを管理したのがProcess Bで、残留ドーピングを減らせることを示している。

 具体的にゲート長が18nmと100nmの場合で比較したのが下の画像である。一番右はトランジスタの利得を比較したもので、ゲート長100mmだとProcess AとProcess Bで違いがないが、ゲート長18nmの場合、Process BはProcess Aに対し、最大で34%の利得向上が可能になっているとする。

これにより、Process Bは特にペナルティなくDIBLを削減できるとしている

 中央と右はゲート長18nmの状態でDIBLの特性とRextを比較したもので、Process BはRextがほぼ変わらないにも関わらず、DIBLを-5mV/V削減できた、としている。

 さて、18nmは100nmに比べれば短いとは言え、CPPを考えると十分に長い。今回の目的は表題にもあるように、ゲート長を6nmとしたRibbon FETの構築である。その成果が下の画像である。

ゲート長を6nmとしたRibbon FETの構築。EDXは元素別に色分けした形で撮影できる。緑がSi、赤がHfを示す

 左端はゲート長6nm、フィン厚み5.5nmのトランジスタのTEM(Transmission Electron Microscope:透過型電子顕微鏡)写真と、そのゲート周辺のEDX(Energy Dispersive X-ray:元素マッピングX線)写真である。説明によれば、ゲートのパターニング/エッチング工程を慎重に最適化したことで、均一なゲート長を持つプロファイルが得られた、としている。

 その右にあるのが、ゲート長6nm/フィン厚み5.5nm、ゲート長7nm/フィン厚み3.1nm、ゲート長6nm/フィン厚み1.7nmという、寸法を変えた3種類のRibbon FETのTEMでの写真であり、いずれもうまくRibbon FETの成型に成功している。

 この3種類のRibbon FETについて、DIBLを測定したのが下の画像の左側である。論文によれば、フィンの厚みが5.5nmの特性は「予想通り」劣悪で、NMOSとPMOSの両方でDIBLが180mV/Vおよび220mV/Vという、Short Channel効果がモロに発揮された結果になっている。

Ribbon FETのDIBL測定結果。この結果「だけ」を見れば、フィン厚みを1.5nmにするのが一番好ましい

 ところがフィン厚みを3.1nmおよび1.7nmにすると、DIBLが低減されることが明確に示されている。実際1.7nmではDIBLが59mV/Vおよび80mV/Vで、5.5nmの場合のほぼ3分の1になる。3.1nmではそこまではいかないが、それでも5.5nmに比べて30~40%の低減が可能である。

 この傾向を、フィンの厚みを横軸にして示したのが右側であり、NMOS/PMOSともにフィンの厚みを減らすと単調にDIBLも減っており、チャネル長が長い時にあった飽和の傾向は、このグラフからは見られないとする。

 下の画像の左側はゲート長6nmの際の、フィンの厚みを変更した場合のDIBLとピークの利得をプロットしたものである。NMOSの場合は、フィンの厚みを6nm→3nmに減少させても性能へのペナルティはほとんどないが、PMOSの場合はフィンの厚みを減らすとRextが大幅に増える関係で、性能の低下が著しいとされる。

論文ではこの左側の結果について、Ribbon FETのスケーラビリティを際立たせているとまとめている。確かにFinFETの世代ではここまで厚みに敏感に特性が変わったりはしない

 右側のグラフは、ゲート長6nmの場合における、フィンの厚みとスレッショルド電圧の関係をまとめた物である。そもそもゲート長が短いとしきい値電圧が増加する(=動作のための消費電力が増える)傾向にあるが、今回はWF(Work Function:仕事関数 金属内の電子を外部に放出させるために必要な最小の仕事量)を工夫することで、このしきい値の増加を上手く帳消しにできたとしており、厚み1.7nmの場合のしきい値は0V、3.1nmでは-0.1V弱と大幅に下げることに成功したとしている。

 論文では最終的に、フィンの厚み5.5nmおよび3nmにおける電子注入速度が1.13x10e7cm/sになることを計測できたとしており、これはCPPが45nmのプロセスで、チャネル長6nmという短チャネルのRibbon FETが優位であることを示しているとまとめている。

論文では計測方法についても触れているが、あまりに専門的すぎるので割愛。ちなみに5.5nmおよび3nmで同程度の電子注入速度を持つことは、先行する研究とも一致しているとしている

 この論文はあくまでもフィンが1枚のトランジスタを試作し、その特性を調査したというものであって、これが量産につながるという話ではない。おそらくこれに近い特性のトランジスタが採用されるのは相当先(Intel 6A?)になるだろうし、その頃にはRibbon FETの次のCFETに移行している頃だろう。そういう遠い未来向けの基礎研究、と考えるのが妥当だ。

この記事に関連するニュース

トピックスRSS

ランキング

記事ミッション中・・・

10秒滞在

記事にリアクションする

記事ミッション中・・・

10秒滞在

記事にリアクションする

デイリー: 参加する
ウィークリー: 参加する
マンスリー: 参加する
10秒滞在

記事にリアクションする

次の記事を探す

エラーが発生しました

ページを再読み込みして
ください