1. トップ
  2. 新着ニュース
  3. 経済
  4. プレスリリース

【大阪産業大学】草場教授研究室の研究グループが英国の物理学会誌「Journal of Physics D: Applied Physics」にオンライン公開されました

Digital PR Platform / 2024年7月11日 14時5分



本研究では、発振波長248 nm、パルス幅20 nsのKrFエキシマレーザーを用いてシリコン太陽電池表面上に図1のような高密度に三角形ナノドット構造を形成することに成功しました。シリコン太陽電池の融解閾値0.47 J/cm2以下のレーザーフルエンスでKrFエキシマレーザーを照射したところ、図1のようにナノドット構造は、レーザーがシリコン太陽電池のピラミッド構造表面に対してS偏光として照射される面(S偏光面)のみに形成されることを発見しました。形成されたナノドット構造の大きさは先端が約20 nmである三角形のナノドット構造であり、この構造のサイズはレーザーの回折限界よりも小さいことがわかりました。ナノドット構造の密度はレーザー波長に関係しており、レーザー波長の2乗に反比例しており、短波長レーザー照射が高密度化に有効であることを見出しました。ピラミッド構造のS偏光面のみにナノドット構造が形成されたシリコン太陽電池の500 nmでの反射率は約5%を達成しました。顕微ラマン分光を用いてシリコン太陽電池の結晶性を評価したところ、ナノドット構造を形成させることによって表面に圧縮応力が発生していることがわかりました。さらにバンドギャップを評価したところ、シリコン太陽電池のバンドギャップエネルギーがより高くなることがわかりました。ナノドット構造は融解閾値の半分程度の弱いレーザーフルエンスで照射しても形成されることから、高効率かつ大面積加工への期待がされます。
以上の成果は、レーザー誘起ナノドット構造形成によってシリコン太陽電池の反射率の低減およびより高いバンドギャップエネルギーはシリコン太陽電池の分光感度が短波長側にシフトすることにつながることから、シリコン太陽電池の高効率化に期待されます。また、今まで融解閾値以下のレーザーフルエンスでの照射については、未開拓な領域であり、この成果はナノ微細構造の形成メカニズムの解明に大きく進展させる足掛かりになるものであります。

1)レーザーフルエンス:1パルス、単位面積あたりのレーザーのエネルギー
2)回折限界:レーザー光を集光した場合、集光径dはレーザー波長λと集光するレンズの焦点距離と開口径との比のFナンバーで決まり、d=1.27λFで表され、理想的な光学系であっても回折によりレーザー波長以下の径にはならない。



【論文タイトルと著者】
タイトル:High-density nanodot structures on silicon solar cell surfaces irradiated by ultraviolet laser pulses below the melting threshold fluence(紫外レーザーパルスを融解閾値以下のレーザーフルエンスで照射されたシリコン太陽電池表面上の高密度ナノドット構造)

この記事に関連するニュース

トピックスRSS

ランキング

複数ページをまたぐ記事です

記事の最終ページでミッション達成してください