1. トップ
  2. 新着ニュース
  3. 経済
  4. プレスリリース

世界初、通信波長の光に共鳴する電子とギガヘルツ超音波のハイブリッド状態を実現 ~超音波を用いた省エネ量子光メモリ素子の実現に期待~

Digital PR Platform / 2024年1月19日 0時0分

写真

 日本電信電話株式会社(本社:東京都千代田区、代表取締役社長:島田 明、以下「NTT」)と学校法人日本大学(本部:東京都千代田区、理事長:林 真理子、以下「日本大学」)は、通信波長の光に共鳴する希土類元素を添加した超音波素子を作製することにより、数ミリ秒の長い寿命を持つ光励起電子とギガヘルツ超音波のハイブリッド状態を生成することに成功しました。本成果により、低電圧な超音波励起を用いたコヒーレンスの高い希土類電子の制御が可能となるため、将来的な省エネ量子光メモリ素子への応用が期待されます。
 本研究成果は、米国東部時間2024年1月18日、米国科学誌Physical Review Lettersにオンラインで掲載されました。


[画像1]https://user.pr-automation.jp/simg/2341/81892/700_304_2024011710344065a72eb02ed18.JPG


1.背景
 希土類元素の一つであるエルビウム(Er)は、通信波長の光に共鳴する内殻電子(※1)を有します。外殻電子によって遮蔽された内殻電子は外界の影響を受けにくいため、Erは高い量子コヒーレンスが得られる元素として量子光メモリに利用されています。しかしながら、外殻電子の遮蔽効果は内殻電子の外部制御を難しくするという負の側面も与えます。実際に、電場を用いて結晶中Erの光共鳴周波数を1 GHz変調する為には100 V以上の高電圧が必要であり、制御性の低さが課題となっていました。これに対してNTTは、低電圧で大きな変調が得られる機械振動子を用いた省エネ量子光メモリ素子の実現へ向けた研究を進めています。これを実現するためには、電子の光応答を機械振動で制御する必要がありますが、それを可能とするための電子と振動のハイブリッド状態(※2)を如何にして創出するかがこれまでの課題でした。

2.本研究の成果
 今回NTTと日本大学は、Erを添加した結晶基板上に超音波の一種である表面弾性波(※3)を生成する素子を作製することにより、約2GHzの振動歪を結晶表面に集中させ、Erの光共鳴周波数を高速変調することに成功しました。この変調速度は励起電子の寿命よりも速く、電子が共鳴線幅を上回る周波数で変調されるため、通信波長帯に共鳴する電子とギガヘルツ超音波のハイブリッド状態が生み出されます。この状態を用いることにより、コヒーレンスの高いEr励起電子の光応答を超音波で低電圧制御することができるため、将来的な省エネ量子光メモリ素子への応用が期待されます。

この記事に関連するニュース

トピックスRSS

ランキング

複数ページをまたぐ記事です

記事の最終ページでミッション達成してください