1. トップ
  2. 新着ニュース
  3. 経済
  4. プレスリリース

機械学習により有望物質群とその設計指針を抽出

Digital PR Platform / 2024年8月7日 10時0分


[画像2]https://digitalpr.jp/simg/1706/92886/550_229_2024080513560466b05b644b3be.jpg


図 2 本手法による物質分類手法の概略図。(a)決定木によるパターン分類の特徴空間での振る舞い、(b)ランダムフォレストモデルのone-hot encodingによるz空間への変数変換、(c)特徴空間(x空間)上でx, x', x''の特徴量で表される物質に対してT本の決定木によるパターン割当を行い、z空間上で物質の分類を行う様子。


 上記の手法の応用例を示すため、Materials Projectデータベース(用語7)から約1,000種類以上の酸化物のデータを取得し、さらにmatminerコード(用語8)を用いて化学式や結晶構造に基づいた特徴量を約700個生成した。そのデータについて生成エネルギー・バンドギャップ・電子系誘電率の機械学習予測モデルを構築して、その予測モデルに基づいたクラスタリング、すなわち物質の分類を行った。ここでは代表的な結果として電子系誘電率の観点での分類について解説する。電子系誘電率はその平方根を取ると光の屈折率となり、光学用途において重要な物性である。特にバンドギャップが広く電子系誘電率の大きい物質は光学コーティングなどの用途で重要であるが、バンドギャップと電子系誘電率は一般的にトレードオフの関係にあり、広いバンドギャップと大きな電子系誘電率を両立するような物質の設計は難しい。
 本研究では電子系誘電率に基づいてクラスタリングを行い、取得した酸化物データを20種類に分割することで図3(a)のような結果が得られた。それぞれのクラスターで確かに電子系誘電率の値が類似した物質がまとまっている傾向が確認でき、そのうちの一つの物質群が比較的広いバンドギャップを持ちながら大きな電子系誘電率を持つことが分かる。さらにその物質群の特徴量の分布を全データと比較することで、有望物質群を特徴づける因子を特定した。例えば図3(b)に示すように、八面体型配位構造が含まれるかどうかの指標に着目すると、全データの分布と比べて有望物質群が明らかに高い値を持つ傾向があることが分かる。このような解析から、この物質群の分類基準は解釈しやすいように簡略化して言えば「八面体配位した遷移金属元素が結晶構造に含まれること」であることが分かった。実際、図3(c)で示すように、この物質群はペロブスカイト型構造やその類似構造を多く含んでおり、確かに「八面体配位した遷移金属元素」を有していることが分かる。さらにこうした物質の電子状態密度の第一原理計算データについて詳細な解析を行うことで、八面体配位したカチオンがバンドギャップの上端(伝導帯の下端)近傍の電子状態の起源となっており、広いバンドギャップと高い誘電率を両立するための鍵となる因子であることが裏付けられた。

この記事に関連するニュース

トピックスRSS

ランキング

複数ページをまたぐ記事です

記事の最終ページでミッション達成してください