1. トップ
  2. 新着ニュース
  3. 経済
  4. プレスリリース

ハイエントロピー化合物におけるイオン拡散の解明 〜高融点と高イオン透過率を持つ新奇材料開発に期待〜

共同通信PRワイヤー / 2024年9月2日 14時0分

 ハイエントロピー結晶における拡散のメカニズムを解明することは、材料設計の指針を与える上で極めて重要です。例えば、リチウムイオン電池の安全性を向上させるためには、高いリチウムイオン透過性と溶融温度を持つ材料がセパレータとして使用されることが望ましいです。そのため、特定のイオンに対して高い拡散係数を持つハイエントロピー結晶の開発は、大きな関心を集めています。

  そこで、我々はハイエントロピー型金属テルライドであるAgInSnPbBiTe5とその関連物質に着目しました。AgInSnPbBiTe5は擬2元系のイオン結晶で、カチオンのみハイエントロピー化されている化合物です。この系はクーロン力が主な原子間相互作用となる単純な系であることから、長時間かつ大きいシステムサイズでの数値計算が可能です。そこで本研究では、分子動力学シミュレーションを用いて、ハイエントロピー型金属テルライドにおけるイオンの拡散挙動の変化を、系統的に調べました。 

【画像:https://kyodonewsprwire.jp/img/202408305652-O1-wFjxS6ow


4.研究の詳細

・カチオンの拡散

 本研究では、まずカチオンの平均二乗変位(注4)について計算しました。図2(a)はAgInSnPbBiTe5の、(b)はSnPbTe2の平均二乗変位を示しています。ハイエントロピー化されたAgInSnPbBiTe5のカチオンは、時間が経過すると増加しますが、SnPbTe2では長時間経っても一定のままとなっています。これは、SnPbTe2ではカチオンが元の原子位置周辺で振動しているのに対し、AgInSnPbBiTe5では時間経過と共に元の位置から離れていくことを意味しています。このことから、ハイエントロピー化することでイオン拡散が大きくなることがわかりました。


【画像:https://kyodonewsprwire.jp/img/202408305652-O2-U7A5wX3F


・フレンケル欠陥の形成

 拡散が大きくなるメカニズムを調べるため、ある時間の全イオンの運動軌跡を調べました。図3(a)は、ある場所のイオンの軌跡を表しています。赤はカチオン、青はTe2-です。あるカチオンが結晶の中間領域に移動していることがわかりました。この場所にイオンが移動することをフレンケル欠陥といいます(図3(b)挿入図)。

この記事に関連するニュース

トピックスRSS

ランキング

複数ページをまたぐ記事です

記事の最終ページでミッション達成してください