1. トップ
  2. 新着ニュース
  3. 経済
  4. プレスリリース

量子の世界で「冷やす」を測る

共同通信PRワイヤー / 2025年1月11日 15時0分


超伝導量子ビットは、マイクロ波などが作る電磁場環境に置かれると、その電磁場環境の持つエネルギー(光子数)に比例して共鳴周波数が変化することが知られています。本研究では、QCRによって冷却される超伝導共振器に、この超伝導量子ビットを配置することで、共振器中に含まれるエネルギーを評価しました。


実験では、まず超伝導共振器に、外部からマイクロ波によって光子を注入し、その注入した光子をQCRとして働く超伝導・常伝導接合によって吸収させる実験を行いました。さらに、接合による光子吸収直後に、共振器に静電的に結合した量子ビットの共鳴周波数変化を測定して、冷却直後の光子数を評価しました(図2)。実験では、QCRによる冷却時間を変化させ、共振器中の光子数が時間的にどのように変化しているか測定しました。その結果、超伝導共振器中にマイクロ波によって導入した3個程度の光子をおよそ50ナノ秒(1ナノ秒は、1秒の10億分の1)で0.07個以下に低減できることがわかりました。これは、QCRを使用しない場合と比べて、およそ15倍高速に超伝導共振器中の光子が減少していることを示しています。


【画像:https://kyodonewsprwire.jp/img/202501082604-O3-O1LsQUWZ


また、本研究では、共振器中に熱的に励起された、1粒に満たないわずかな光子を量子回路冷却によって低減できることも実証しました。本実験では、素子を冷却している希釈冷凍機の設定温度を変化させ、共振器中に熱的に1粒以下の光子を導入しました。さらに、その共振器中に熱的に励起された光子を超伝導・常伝導接合によって100ナノ秒程度だけ吸収し、超伝導量子ビットによって光子数を測定しました。その結果、1粒以下のわずかな光子であっても、100ナノ秒という短時間で、冷却前に比べて光子数を低減できることを初めて示しました(図3)。この研究は、光子数が1に満たない量子領域にある超伝導共振器に対して、高速な量子回路冷却が有効であることを意味しています。また、熱の影響によりその量子性が失われてしまう量子回路を、量子回路冷却技術によって“保護”できる可能性を示しました。


【画像:https://kyodonewsprwire.jp/img/202501082604-O4-eeFA6yGk


今後の予定

今後は、この測定技術を用いて、超伝導量子ビットのさらに高速で高忠実度な初期化を目指した素子開発や評価を行います。また、超伝導量子ビットや共振器だけではなく、磁性体などで実現された量子回路においても量子回路冷却の有効性を示し、熱や外部環境の影響を抑制することで量子技術の社会実装につながる研究を進めていきます。

この記事に関連するニュース

トピックスRSS

ランキング

複数ページをまたぐ記事です

記事の最終ページでミッション達成してください