1. トップ
  2. 新着ニュース
  3. 経済
  4. プレスリリース

物質の相転移を用いて、光のトポロジカル相転移を世界で初めて実現 ~オンデマンドに再構成可能な新機能光集積回路につながる新しい光制御の開拓~

Digital PR Platform / 2024年9月6日 15時11分

②ハイブリッドフォトニック結晶作製技術の開発
 図3で説明した構造を実現するためには、フォトニック結晶を構成するシリコン層と、その上に装荷するGST膜に異なるパターンを形成する必要があります。しかし、従来の殆どのフォトニック結晶は複数材料で構成してもパターンは共通でした。今回、NTTと東工大の研究チームでは、最先端の微細化加工技術と正確な位置合わせ技術により、フォトニック結晶上に任意のパターンの薄膜構造を形成する技術を確立し、図3に理論提案した構造を実際に作製することに成功しました。
 具体的な作製プロセスを図4上に示しますが、電子線露光によるパターン形成を二段階で行い、正確な位置合わせ技術によりハイブリッド構造を作製しています。図4下に作製した構造の電子顕微鏡像および原子間力顕微鏡による立体像を示しますが、二つの材料のナノスケールのパターンが設計通りに位置合わせされて形成されており、ホストとなるフォトニック結晶の上にパターンの異なる機能材料が装荷されたハイブリッドフォトニック結晶構造が実現されていることを示しています。このようなハイブリッド構造はこれまでに世界の研究機関で作製された例はありませんでした。




[画像4]https://digitalpr.jp/simg/2341/94555/550_338_2024090517484366d9706be30dc.png




図4:(上)ハイブリッドフォトニック結晶の作製方法。(下)作製した構造の電子顕微鏡像及び原子間力顕微鏡像。

3.実験の概要
 作製したハイブリッドフォトニック結晶構造のフォトニックバンド構造を、角度分解反射分光法※8と呼ばれる手法で測定した結果を図5に示します。左の結果はGSTが結晶相にある場合、右はGSTがアモルファス相にある場合の同一試料に対する測定結果です。二つの逆向きの放物線形状がそれぞれフォトニックバンドに相当しています。左の結果では放物線の底の位置で下のバンドが明るく見えていますが、右の結果では逆に上のバンドの頂点が明るく見えています。この明るさのコントラストが反転する現象が、バンドが反転し光のトポロジカル相転移が起きた証拠となっています。さらに詳細な分析から、左のバンドはチャーン数の大きさがゼロのノーマル相、右は1であるトポロジカル相であることが確認されました。この実験結果は、GSTの相転移によって、フォトニック結晶のバンドが反転し、光のトポロジカル相転移が実現したことを示しています。

この記事に関連するニュース

トピックスRSS

ランキング

複数ページをまたぐ記事です

記事の最終ページでミッション達成してください