1. トップ
  2. 新着ニュース
  3. 経済
  4. プレスリリース

新方式の量子コンピュータを実現 ~世界に先駆けて汎用型光量子計算プラットフォームが始動~

Digital PR Platform / 2024年11月8日 13時5分

研究手法と成果
 今回整備された光量子コンピュータは、時間分割多重化手法を用いた測定誘起型[5]のアナログタイプの量子コンピュータです。ここでアナログタイプの量子コンピュータとは、ビットではなく連続的な量で表される量子を基にした連続量(アナログ)量子コンピュータ[6]を指します。具体的には光波の振幅値[7]が情報のキャリア(搬送媒体)となります。これに時間分割多重と測定誘起型の手法を組み合わせることにより、大規模かつ効率的な量子コンピュータが実現します。
 測定誘起型量子コンピュータでは、量子テレポーテーションの繰り返しによって計算が実行されます。これは2013年に古澤チームリーダーらのグループにより明らかにされました。量子テレポーテーションは、量子の情報を量子もつれと呼ばれる量子的な相関を介して遠隔地に転送する手法であり、1998年に古澤チームリーダーらによって世界で初めて条件なしで実験的に実証されました。この量子テレポーテーションの概念図が図1です。量子テレポーテーションは、量子操作として考えると一つの量子状態を入力しそのまま出力される恒等操作でしかありませんが、測定の部分に変更を加える(測定基底の変更[8]を行う)ことで、恒等操作ではないさまざまな量子操作を実現することができます。測定誘起型の手法では、まず大規模な量子もつれを生成し、それに対して測定を介して量子テレポーテーションを繰り返し実行し、マルチステップの量子操作を実現します。


[画像2]https://digitalpr.jp/simg/2341/98581/500_228_20241107172839672c7a370792d.png


図1 量子テレポーテーション

量子テレポーテーションは、入力の量子が持つ情報を、量子もつれを介して出力へと伝送する手法である。入力と量子もつれは50:50(50%反射、50%透過)のビームスプリッター(青の長方形)で重ね合わされ、その後測定される。測定値は電気信号として出力側に伝送され、量子操作D が実行されることで、量子テレポーテーションが完了する。ここで、測定基底(θ1 およびθ2 )の変更を行うことで、入力に対して多様な量子操作を実現できる。測定誘起型量子コンピュータでは、量子もつれを大規模に生成して、その測定を介して量子テレポーテーションを繰り返し実行する。

 測定誘起型量子コンピュータでは、大規模な量子もつれの生成が重要です。そのために、光の進行波としての性質と時間分割多重化手法を活用します。図2は光量子コンピュータ実機の光学装置の概略図です。この構成は2016年のAlexanderとMenicucciによる提案に基づきます。
 まず四つの量子リソースデバイスA~Dがあります。これは光パラメトリック増幅器と呼ばれるデバイスで、量子的性質を持つ光、スクイーズド光[9]を生成します。スクイーズド光とは、光の持つ量子揺らぎが圧搾(スクイーズ)された光で、量子もつれを生成するために必要です。このスクイーズド光が連続的に進行波として生成されますが、これを時間的に区切って光パルスとして扱います。
 二つのスクイーズド光パルスが50%反射ビームスプリッター[10]で重ね合わされることによって、A-B間およびC-D間にそれぞれ2者間量子もつれが連続的に生成されます。次に、B、Dの光路にそれぞれ光パルス一つ分、光パルスN個分の遅延を与えます。これにより、2者間量子もつれが異なる時間に分配されます。同時刻に存在する四つの光パルスをワンセットとしてマクロノードと呼びます。

この記事に関連するニュース

トピックスRSS

ランキング

複数ページをまたぐ記事です

記事の最終ページでミッション達成してください