1. トップ
  2. 新着ニュース
  3. 経済
  4. プレスリリース

新方式の量子コンピュータを実現 ~世界に先駆けて汎用型光量子計算プラットフォームが始動~

Digital PR Platform / 2024年11月8日 13時5分


[画像3]https://digitalpr.jp/simg/2341/98581/700_290_20241107172840672c7a38c7a79.png


図2 光量子コンピュータ光学装置概略図

A、B、C、Dは光パラメトリック増幅器を表す。このデバイスから、量子揺らぎが圧搾された光(スクイーズド光)が出射される。これを時間Δtで区切り、光パルスとして扱う。二つの光パルスが50%反射ビームスプリッター(青の長方形)で重ね合わされると、A-B間、C-D間にそれぞれ2者間量子もつれが次々と生成される。その後、Bの光路では光パルス一つ分(Δt)、Dの光路では光パルスN個分(NΔt)をそれぞれ遅延させる。その結果、2者間量子もつれが異なる時間に分配される。これを複数の50%反射ビームスプリッターで重ね合わせてから測定することで、テレポーテーションベースの量子操作が実行される。量子操作に応じて、光パルスごと(kはパルスの番号)に測定基底(θka,θkb, θkc,θkd )を変更する。

 光遅延がパルスN個分であることからマクロノードが周期Nの構造を持ちます。このため、並べ替えを行うと図3(a)のように量子もつれが時間的に格子上の広がりを持つ構造であることが分かります。この格子状に広がった量子もつれが光量子コンピュータの計算リソースとなります。特に、この量子もつれのサイズは、光遅延路で決まるNと経過時間で決まるため、時間をかけることでいくらでも大きな量子リソースが利用できます。

[画像4]https://digitalpr.jp/simg/2341/98581/700_386_20241107172840672c7a38dae8b.png


図3 時間領域で多重化された量子もつれとそれを用いた量子計算

(a)マクロノードを並び替えると、量子もつれが時間的に格子状に広がっている(多重化されている)ことが分かる。これが量子コンピュータの計算のリソースになる。量子もつれのサイズ、すなわち計算のリソースは、時間をかければかけるほど大きくなる。
(b)各マクロノードに対してテレポーテーションベースの量子操作を行うことで、多入力に対して多段階の量子操作を実行する。

 実際の計算はマクロノードを形成する四つの光パルスに対して、非局所的な測定(複数の50%反射ビームスプリッターによる重ね合わせと測定)を行うことで、テレポーテーションベースの演算を行います(図2)。各マクロノードに対してテレポーテーションベースの量子操作を行うことで、多入力に対して多段階の量子操作を実行します(図3(b))。今回の光量子コンピュータでは約100個の連続量入力に対し任意ステップ数の線形演算が可能となっています。
 図4左は基幹部であるNTT先端集積デバイス研究所作製の光パラメトリック増幅器です。周期分極反転ニオブ酸リチウム導波路であり、極めて広い帯域(約6THz)と、高いスクイージングレベル(最大8デシベル(dB)程度)を両立しています。光のパルス幅は時間的には10ナノ秒(1ナノ秒は10億分の1秒)、空間的には3m相当に設定され、これは100メガヘルツ(MHz、1MHzは100万ヘルツ)のクロック周波数に対応します。このパルス幅は、現状の光測定器とそれにつながる電子機器の帯域で決定されています。
 図4右は光測定器のコントロールと測定値のデータ収集を行うプログラマブルロジックデバイス[11]です。このデバイスは100MHzの周期で電気パルスを生成し光の測定基底を高速で操作します。これにより所定の量子操作を各マクロノードに行うことになります。

この記事に関連するニュース

トピックスRSS

ランキング

複数ページをまたぐ記事です

記事の最終ページでミッション達成してください