1. トップ
  2. 新着ニュース
  3. 経済
  4. プレスリリース

数理モデルの誤差を細胞内のセンサー分子を使って補正する、 コンピューターと細胞が協力するハイブリッドなバイオプロセス制御システムを開発

Digital PR Platform / 2024年11月21日 17時28分


<研究手法・研究成果>
提案した制御システムの実証のために、本研究では以前にZhang教授らが開発した脂肪酸※6を生産する大腸菌株に着目しました。脂肪酸を生合成する際に細胞内で生じる重要な化学反応のひとつが、材料となるアセチルCoAから中間反応体であるマロニルCoAを作る反応です。この反応はアセチルCoAカルボキシラーゼ(ACC)という酵素によって触媒されます。ACCの発現増強は脂肪酸の生産量を増加させる一方で、細胞増殖や維持を阻害することが知られています。Zhang教授らの大腸菌には、マロニルCoAセンサーと制御スイッチのふたつの部分からなる遺伝子回路が組み込まれています(図1)。制御スイッチは、誘導剤に応答してACCの発現を開始します。ACCの増加にともない細胞内に蓄積したマロニルCoAが一定量に達すると、マロニルCoAセンサーがそれを検知し、制御スイッチに伝えます。すると代謝スイッチはACCの発現を緩めます。これにより遺伝子回路はACCの発現増強を適切なレベルに抑え、細胞増殖と生命活動への影響を軽減することができます。
研究グループはまず、さまざまな誘導剤濃度下での大腸菌の増殖と脂肪酸の生産を予測する数理モデルを構築しました。そしてそれを使って誘導剤の濃度を最適化するハイブリッドな制御システムを設計しました。これにより、ACCの増加による反応速度の改善と、細胞にかかる負担とのバランスを取り、脂肪酸生産量を最大化することが可能になります。次に、設計されたハイブリッド制御システムが、数理モデルの誤差に対して堅牢であることを示すために、シミュレーション上で脂肪酸の生産量を評価しました。シミュレーションでは、ACCが数理モデルによる予測よりも速く、あるいは遅く蓄積するような誤差をあえて加えました。誘導剤の濃度はACCの蓄積速度を考慮して最適化されているので、その予測が外れることは最終的な脂肪酸生産量にとって致命的です。それにも関わらず、シミュレーションの結果、細胞内のセンサー分子が実際のACCの増加を間接的に感知し、制御スイッチの切り替えタイミングをリアルタイムで調節することで、脂肪酸生産量の減少を抑えることができました。

[画像1]https://digitalpr.jp/simg/2299/99502/600_230_20241121162233673edfb9ef181.png

この記事に関連するニュース

トピックスRSS

ランキング

複数ページをまたぐ記事です

記事の最終ページでミッション達成してください