1. トップ
  2. 新着ニュース
  3. 経済
  4. プレスリリース

追手門学院大学の高見剛教授らの研究チームがアニオン副格子の回転運動を用いたフッ化物イオン伝導体の創出に初めて成功 ― 全固体フッ化物イオン電池実現に向けて新たな一歩

Digital PR Platform / 2024年9月13日 20時5分

追手門学院大学の高見剛教授らの研究チームがアニオン副格子の回転運動を用いたフッ化物イオン伝導体の創出に初めて成功 ― 全固体フッ化物イオン電池実現に向けて新たな一歩



追手門学院大学(大阪府茨木市、学長:真銅正宏)理工学部(2025年4月開設)の高見剛教授の研究チームは、九州大学の多田朋史教授、高エネルギー加速器研究機構の森一広教授と共同で、フッ化物イオンを正極と負極の間で行き来させる固体電解質(※1)として、アニオン副格子の回転機構を用いたフッ化物イオン伝導体を創出した。これにより、伝導率の高い新たなフッ化物イオン伝導体の設計に向けた戦略の広がりが期待される。本研究成果は、2024年9月10日(米国時間)に米国化学会の学術誌『Chemistry of Materials』に掲載された。




【本件のポイント】
○既存の固体電解質に匹敵するフッ化物イオン伝導率を達成
○富岳を使用した第一原理計算により、アニオン副格子の回転運動に伴うイオン伝導を発見
○全固体フッ化物イオン電池の固体電解質の素材探索に向けた新たな戦略を開拓

【「全固体フッ化物イオン電池」について】
 全固体フッ化物イオン電池とは、フッ化物イオン(F⁻)が固体電解質を通して正極と負極の間で行き来することで充放電する蓄電池。多くとも1電子の反応を伴うリチウムイオン電池と異なり、一度に複数の電子が反応に関与する多電子反応を用いるため、容量を高めることが可能である。
 近年では、リチウムイオン電池の数倍の容量をもち、高い安定性と長時間の使用にも耐えるとされ、高性能蓄電池として期待されており、液体でなく固体電解質を用いることで発火のリスクを抑え、設計の自由度も増す。しかしその開発に向けて課題になっているのは、室温状態で高いフッ化物イオン伝導率(※2)を示す材料の開発であった。

【概 要】
 カーボンニュートラルの実現に向けて、電気を繰り返し充放電できる二次電池の重要性が増している。現在、主流であるリチウムイオン電池に用いられるリチウムは、埋蔵量が少なく、供給が需要に追いつかなくなるという懸念もあり、レアメタルを使用せずに高いエネルギー密度を持つ次世代電池の開発が進められている。

 「全固体フッ化物イオン電池」の実用化できる多結晶状態での固体電解質としては、これまでランタン・バリウム・フッ素を用いた化合物(La₀.₉Ba₀.₁F₂.₉)が一般的で、フッ化物イオンが動く空孔を異価元素置換(価数の違う元素で置換する方法)により作り、フッ化物イオンを伝導させていく仕組みが用いられてきたが、伝導率の向上には限界があった。
 伝導率向上にむけては、伝導率がより高い材料の探索と化合物の合成が必須で、本研究では、格子間にフッ素が存在し、その付近に分極率(※3)の大きなタリウムが位置する化合物を新たに合成し、元素置換を行い3次元的な隙間を作り出すことによってフッ化物イオン伝導率の向上を試みた。
 そしてF空孔量、格子体積、粒径サイズの最適化を行った結果、今回生成した化合物「Tl₄.₅Sn₁₋xBxF₈.₅-x(B = Al, Y, Sm)」は、La₀.₉Ba₀.₁F₂.₉に匹敵するフッ化物イオン伝導率を達成し、さらにアニオン(陰イオン)副格子の回転運動が関与することを初めて実証した。
 この回転運動は全固体リチウムイオン電池を用いた研究でも確認されており、固体電解質内での伝導率が優れなかったフッ化物イオンの伝導率向上を示唆するもので、全固体フッ化物イオン電池の開発に向けて、新たな固体電解質の探索的な開拓が期待される。

この記事に関連するニュース

トピックスRSS

ランキング

複数ページをまたぐ記事です

記事の最終ページでミッション達成してください