1. トップ
  2. 新着ニュース
  3. 経済
  4. プレスリリース

若い超新星残骸SN1006で「磁場増幅」の証拠を発見

共同通信PRワイヤー / 2024年7月24日 18時0分


(B)続いて、超高解像度の電波画像とX線画像を直接比較し、SN1006の衝撃波面の厚みを比較しました。MeerKAT望遠鏡は南アフリカに設置された口径13.5メートル、64台からなる電波望遠鏡群で、1.4GHzの観測帯で過去最高の解像度(8秒角)を誇ります。一方で、チャンドラ衛星はX線領域で過去最高の解像度(0.5秒角)を持ち、これらの画像を直接比較することで新たな示唆が得られると期待されます。


【画像:https://kyodonewsprwire.jp/img/202407244052-O24-2e46g6OT

図4:(a)-(d) SN1006の北東シェル、南西シェルの電波、X線画像の比較 

(e)-(f) それぞれ1-4の白線に沿って作成した電波(緑色)とX線(赤色)の断面図。

電波のシェルはX線より太いが、高々10倍程度であることが分かる

4

(C)上記ではSN1006で電波を出す領域の磁場の強さが非常に強く、かつX線を出す領域の磁場とは全く異なる可能性を示しました。


それでは最後に、電波からガンマ線をつなぐ多波長スペクトルからSN1006で何が起きているのか、謎解きをしてみたいと思います。図5は、今回新しく解析した広帯域の電波スペクトル(図中青色)を加えた多波長データとなります。ここではさらに、可視光・紫外線の過去の観測から見積もった強度(図中黒丸)を新たに加えています。ここで、電波からX線は高エネルギー電子のシンクロトロン放射と考えられますが、今回検出された折れ曲がりのある第1成分(図中緑:ホットスポット)、さらには可視・紫外線とX線で滑らかにつながる第2成分(図中ピンク:全体平均)が混在していることが分かります。第2成分については、高エネルギーのガンマ線放射(同じ電子からの放射だが、逆コンプトン放射(※5)という別な放射)との強度比から、磁場が約 と正確に求められました。これは従来の観測から得られる示唆と矛盾せず、また他の超新星残骸で信じられている磁場の強さでもあります。一方で、第1成分の電波放射を作るには、約100倍以上磁場が強められることが必要です。つまり、電波とX線では放射に主に寄与する磁場の強さが全く異なる、すなわち放射領域が異なることが初めて示されました。


【画像:https://kyodonewsprwire.jp/img/202407244052-O25-U2g5eb97

この記事に関連するニュース

トピックスRSS

ランキング

複数ページをまたぐ記事です

記事の最終ページでミッション達成してください